Submit a preprint

Welcome to PCI Forest & Wood Sciences!

What is PCI Forest and Wood Sciences​?

Want to get involved?

  • You can create your account to stay updated (select Sign Up under Log In on the upper right corner)
  • If you want to become a recommender, send an email to: contact@forestwoodsci.peercommunityin

Latest recommendations

IdTitle * Authors * Abstract * Picture * Thematic fields * Recommender▲ReviewersSubmission date
03 Aug 2022
article picture

Fire and forest loss in the Dominican Republic during the 21st Century

Spatio-temporal fire and forest loss patterns in the Dominican Republic

Recommended by based on reviews by Kevin Cianfaglione and 2 anonymous reviewers

​​​​​Fires in the Anthropocene, whether natural or human-induced, are among the main factors of deforestation, threatening forest resilience and biodiversity (Kelly et al. 2020). Fire events have also increased in occurrence and severity worldwide in the past decade (e.g. Whitman et al. 2022, Ribeiro et al. 2020). In this context, we need to better understand the links between fire occurrence and their impact on forest loss, especially in countries where such knowledge is lacking.

The work by Martinez-Batlle addresses this need as it thoroughly describes forest loss and fire patterns across the forests of the Dominican Republic (DR), and systematically tests their spatial and temporal correlations across the DR regions since 2001. To this end, the author combines two independent databases from NASA: the Global Forest Change 2000-2018 data service, and remotely sensed data on fire/hotspot occurrence. The author then provides a state-of-the-art analysis pipeline that first shows significant spatial autocorrelations in both forest loss and fire density over the whole period, and each year across the period. Detailed maps of zonal statistics across hexagonal grids also illustrate clusters of either high or low forest loss and fire points, and distinguish small or large clearings. Second, these spatial dependencies are accounted for in spatial autoregressive models, and congruent patterns of forest loss and fire density are shown across the 2001-2018 period in the DR. This is consistent with the initial working hypothesis of a link between deforestation and slash and burn agriculture. Third, detailed time-series analyses and modelling show common cyclical patterns for forest loss areas in large clearings, number of small clearings, and fire density in the first 14 years, with no increasing trends. In contrast, fire density does not predict extensive forest loss in the eastern half of the country for most years. Finally, yearly maps clearly depict uncontrolled wildfires that impacted larger areas in recent years in both the central and southern mountain ranges of the DR.

This work, therefore, provides a solid, detailed, and rigorous account of the current status of forest loss across the DR, and of its causes, either from recurrent fires due to shifting agriculture or from farming linked to tourism expansion. These results could be very useful for designing strategies adapted to each particular zone of the DR, for preventing human-induced fires or managing wildfires, and for planning post-fire reforestation. This is true, especially for core protected areas where an increasing trend of forest loss is identified in the last 8 years (up to 25% in some mountainous and inaccessible areas of the DR). In those areas, the author suggests implementing a natural regeneration program. Indeed, recent scientists’ warnings stress that fires should be accounted for when planning reforestation for climate change mitigation (Leverkus et al. 2022), with evidence in different ecosystems, that natural regeneration with local seed banks would benefit their post-fire recovery. As proposed by the author, this new knowledge for the DR should also help develop policies for managing forest fires and biodiversity, which are lacking in areas close to tourism facilities. More generally, this study offers methods and graphical representations that are likely to inspire future work with similar databases in other countries where data are scarce, on either spatial trends or temporal evolution of forest cover, or fire activities, or both.

References

Kelly LT, Giljohann KM, Duane A, Aquilué N, et al. (2020). Fire and biodiversity in the Anthropocene. Science, 370(6519), eabb0355. https://doi.org/10.1126/science.abb0355

Leverkus AB, Thorn S, Lindenmayer DB, Pausas JG (2022) Tree planting goals must account for wildfires. Science 376(6593): 588-589. https://doi.org/10.1126/science.abp8259

Martinez Batlle JR (2022) Fire and forest loss in the Dominican Republic during the 21st Century. bioRxiv, 2021.06.15.448604, ver. 4 peer-reviewed and recommended by Peer Community in Forest and Wood Science. https://doi.org/10.1101/2021.06.15.448604

Ribeiro LM, Viegas DX, Almeida M, McGee TX, et al. (2020) 2 - Extreme wildfires and disasters around the world: lessons to be learned. In F. Tedim, V. Leone, T.K. McGee (Eds.), Extreme Wildfire Events and Disasters, Elsevier Inc. 31-pp. 51. https://doi.org/10.1016/B978-0-12-815721-3.00002-3

Whitman et al. (2022) Climate-induced fire regime amplification in Alberta, Canada. Environ. Res. Lett. 17(5): 055003. https://doi.org/10.1088/1748-9326/ac60d6

Fire and forest loss in the Dominican Republic during the 21st CenturyJose Ramon Martinez Batlle<p>Forest loss is an environmental issue that threatens ecosystems in the Dominican Republic (the DR). Although shifting agriculture by slash-and-burn methods is thought to be the main driver of forest loss in the DR, empirical evidence of this re...Forest history, Forest policies , Silviculture and forest managementPauline Garnier-Géré2021-11-13 17:04:31 View
08 Aug 2023
article picture

Pollen contamination and mating structure in maritime pine (Pinus pinaster Ait.) clonal seed orchards revealed by SNP markers

New insights in seed orchards pollen contamination, study case in an advanced breeding program

Recommended by based on reviews by Eduardo Notivol and 1 anonymous reviewer

This preprint (Bouffier et al, 2023) analyses different biological (tree genotype, age, flowering phenology) and environmental factors (vicinity with external pollen sources, orchard structure, soil type, climatic conditions) with influence on the of seed lots in seed orchards of an important forest tree species (Pinus pinaster Ait.).  The analysis is based on an optimized set of 60 SNP markers that constitute a new tool for characterizing improved material in the breeding program of the species.

One of the main questions when managing seed orchard is to obtain a precise estimation of pollen contamination, as it causes major losses to genetic improvement from selection and breeding (Di Giovanni and Kevan, 19911) but also will determine the adaptive potential of the species (Kremer et al. 2012). The results indicate that contamination rates were highly variable between seed lots (from 20 to 96%), with a mean value of 50%). The main factors determining these rates include the distance between the seed orchard and external pollen sources, rain during the pollination period, seed orchard age, soil conditions and seed parent identity. 

A second point of interest in this paper is the determination of the overall self-fertilization rate. This factor also determines the quality of the seed-lots and was estimated as 5.4%, with high variability between genotypes (from 0% to 26%). The overall value is of the same order of magnitude than in other species. 

These results are used to define some recommendations for managing seed orchards in the French breeding program, but that can be generalized to other species (eg. Mullin and Lee, 2013). As an example, they recommend that sampling 100 seeds annually should be sufficient to estimate pollen contamination (with a standard error of 5%). Also, they suggest that one of the main measures to reduce pollen contamination is carefully selecting the location of the orchard, in terms of its distance from external pollen sources and soil conditions, and not collecting seeds from young trees (below 8 years old). 

The present preprint revisits an important topic of research with interest for the biology of tree species, but also with great implications in applied breeding activities. The main conclusions are essential to understand the importance of different factors in managing seed orchards and in the future performance of the reproductive material. 

In conclusion, this paper stresses the need for more studies, taking advantage of new genomic tools, to advance the knowledge of factors influencing the success of breeding programs.

REFERENCES

Bouffier L, Debille S, Alazard P, Raffin A, Pastuszka P, Trontin JF (2023). Pollen contamination and mating structure in maritime pine (Pinus pinaster Ait.) clonal seed orchards revealed by SNP markers. bioRxiv, 2022.09.27.509769, ver. 2 peer-reviewed and recommended by Peer Community in Forest and Wood Science. https://doi.org/10.1101/2022.09.27.509769

Di-Giovanni F, Kevan PG (1991) Factors affecting pollen dynamics and its importance to pollen contamination: a review. Can J For Res 21(8):1155-1170.
https://doi.org/10.1139/x91-163
 
Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15(4):378-92.
https://doi.org/10.1111/j.1461-0248.2012.01746.x

Mullin TJ, Lee SJ (2013) Best practice for tree breeding in Europe. Skogforsk, Uppsala, Sweden. ISBN: 530 978-91-977649-6-4. https://www.skogforsk.se/contentassets/42acda01f83843bf925f690bd0a6ed37/best-practice-hela-low.pdf

Pollen contamination and mating structure in maritime pine (*Pinus pinaster* Ait.) clonal seed orchards revealed by SNP markersLaurent Bouffier, Sandrine Debille, Pierre Alazard, Annie Raffin, Patrick Pastuszka, Jean-François Trontin<p style="text-align: justify;">Maritime pine (<em>Pinus pinaster</em> Ait.) is a major forest tree species in south-western Europe. In France, an advanced breeding program for this conifer species has been underway since the early 1960s. Open-pol...Population dynamics, genetics and genomics of forest trees, Silviculture and forest managementRicardo Alia2022-09-29 11:39:50 View
14 Oct 2020
article picture

Interaction of drought and frost in tree ecophysiology: rethinking the timing of risks

Giving a temporal context to drought and frost vulnerability of trees

Recommended by based on reviews by Jordi Martínez Vilalta and Sean Gleason

Range limits of forest species are frequently imposed by spatial gradients in climatic variables. Tolerance to maximum and minimum temperatures, including short-term extremes, and tolerance to desiccation are crucial limiting factors for plant survival and often appear interrelated (Box 1995; Choat et al. 2018). Increasing temperatures, more frequent and extreme droughts and late frost events associated with global climate change will affect the dynamics of forest ecosystems and have the potential to dramatically increase plant mortality and accelerate species range shifts if plants are not able to adapt in situ to the novel climate regimes (Parmesan 2006; Choat et al., 2012). This is particularly important at species range edges, where climatic conditions may not be sufficient to impose mortality on individuals directly, but trees experience greater physiological stress, which influences such factors as dispersal, habitat selection, and subsequent reproductive fitness (Parmesan 2006). In such marginal situations, where gene flow may be also restricted (López de Heredia et al. 2010), the effectiveness of adjustment through natural selection is limited resulting in increased vulnerability to extreme climatic events and to a higher risk of mortality of trees.
Tree responses to drought and frost have been extensively studied at many scales from ecophysiology to molecular biology across a large range of species inhabiting diverse biomes (Sakai and Larcher 1987; Bréda et al. 2006). Avoiding dehydration of tissues to maintain cellular viability and function is at the basis of the plant strategy to deal with both constraints as shown by Charrier et al. (2020). These authors go one step further and discuss the impact of the interaction of drought and frost on tree water status and carbon metabolism with special emphasis on the temporal context. Plants from temperate and boreal regions show changes in their resistance to freezing temperature throughout the year (Bower and Aitken 2006) and xylem becomes more resistant to cavitation with cambial age (Rodríguez-Zaccaro et al. 2019). Including timing in this framework involves incorporating phenology. This will be a fundamental step to model species distribution limits in the face of climate change since most observations of climate-change responses have involved alterations of species’ phenologies (Parmesan et al. 2006). For example, the onset of the growing season of trees in temperate Europe is 2.3 days ahead per decade during the last 40 years (Parmesan et al. 2006). Moreover, some studies have shown that climatic constraints limit species distribution mainly because of their impact in phenology rather than their impact on drought and frost mortality (Morin et al. 2007). However, longer growing seasons along with more frequent extreme events increase the probability of long-lived organisms such as trees to experience frosts and drought during the same growing season or one of them after uncompleted recovery of the other in some latitudes. Over the last decade much attention has been devoted to the recovery of growth and ecological function after stressful events (Lloret et al. 2011). Some dendroecological studies have shown for example that resilience to extreme droughts might be constrained by having experienced more frequent droughts, thus exceeding the potential for acclimation of the tree (Bose et al. 2020). Drought can result in chronic hydraulic impairment which can last moths to years (Anderegg et al. 2015) and for some species also in cavitation fatigue, i.e. a progressive increase in vulnerability to cavitation (Hacke et al. 2001), thus increasing vulnerability to subsequent drought and frost events.
Models have proved to be useful tools for synthetizing and integrating climate and soil properties with key functional traits in order to determine desiccation dynamics, carbon metabolism and plant survival during drought of frost (Martin-StPaul et al., 2017; Charrier et al. 2018; Blackman et al., 2019). However, models are currently limited by gaps in our understanding of the fundamental physiological mechanisms that constrain species ranges. Most common approaches to studying species range shifts are related to climatic niches and overlook the processes and traits involved in drought or frost tolerance (Cheaib et al. 2012). Process-based models based on plant hydraulics seem promising providing the link between environmental cues and plant responses, although disregarding carbon metabolism will not give us predictive understanding of system changes such as those due to climate fluctuations (Mackay et al. 2015). New modeling approaches need to be developed not only for better drought prediction performance but for the interaction of drought with other factors. Charrier et al. (2020) offer a framework for improving process-based models with the aim to provide better prediction of carbon and water economy, organ development and ultimately species distribution limits in the face of warmer winters and more frequent winter droughts at high altitudes and late frosts events.

References

Anderegg WR, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams A (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349: 528–532. doi: https://doi.org/10.1126/science.aab1833
Blackman CJ, Li X, Choat B, Rymer PD, De Kauwe MG, Duursma RA, Tissue DT, Medlyn BE (2019) Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates. New Phytologist 224: 632-643. doi: https://doi.org/10.1111/nph.16042
Box EO (1995) Factors determining distributions of tree species and plant functional types. Vegetatio 121, 101–116 (1995). doi: https://doi.org/10.1007/BF00044676
Bower AD, Aitken SN (2006) Geographic and seasonal variation in cold hardiness of whitebark pine. Can J For Res 36:1842–1850. doi: https://doi.org/10.1139/x06-067
Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought:  a review of  ecophysiological responses, adaptation processes  and long-term consequences. Ann. For. Sci. 63: 625-644. doi: https://doi.org/10.1051/forest:2006042
Charrier G, Lacointe A, Améglio T (2018) Dynamic modeling of carbon metabolism during the dormant period accurately predicts the changes in frost hardiness in walnut trees Juglans regia L. Frontiers in Plant Science, 9: 1746. doi: https://doi.org/10.3389/fpls.2018.01746
Charrier G, Martin-Stpaul N, Damesin C, Delpierre N, Hänninen H, Torres-Ruiz J, Hendrik Davi H (2020) Interaction of drought and frost in tree ecophysiology: rethinking the timing of risks. HAL, 02475505, ver. 4 peer-reviewed and recommended by PCI Forest & Wood Sciences. https://hal.archives-ouvertes.fr/hal-02475505v4
Cheaib A, Badeau V, Boe J, Chuine I, Delire C, Dufrêne E, François C, Gritti ES, Legay M, Pagé C (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecology Letters 15(6): 533-544. doi: https://doi.org/10.1111/j.1461-0248.2012.01764.x
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, et al. (2012) Global convergence in the vulnerability of forests to drought. Nature 491, 752–755. doi: https://doi.org/10.1038/nature11688
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018) Triggers of tree mortality under drought. Nature 558(7711): 531-539. doi: https://doi.org/10.1038/s41586-018-0240-x
Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA (2001) Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physol., 125(2), 779–786. doi: https://doi.org/10.1104/pp.125.2.779
Lloret F, Keeling EG, Sala A (2011) Components of tree resilience: effects of successive low‐growth episodes in old ponderosa pine forests. Oikos, 120: 1909-1920. doi: https://doi.org/10.1111/j.1600-0706.2011.19372.x
López de Heredia U, Venturas M, López R, Gil L (2010) High biogeographical and evolutionary value of Canary Island pine populations out of the elevational pinebelt: the case of a relict coastal population. J. Biogeogr. 37, 2371–2383. doi: https://doi.org/10.1111/j.1365-2699.2010.02367.x
Mackay DS, Roberts DE, Ewers BE, Sperry JS, McDowell NG, Pockman WT (2015) Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought, Water Resour. Res., 51, 6156–6176. doi: https://doi.org/10.1002/ 2015WR017244
Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecology Letters 20(11): 1437-1447. doi: https://doi.org/10.1111/ele.12851
Morin X, Augspurger C, Chuine I (2007) Process-based modeling of species' distributions: what limits temperate tree species' range boundaries? Ecology 88(9):2280-2291. doi: https://doi.org/10.1890/06-1591.1 PMID: 17918406.
Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology and Systematics 37, 637–669. doi: https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
Rodriguez‐Zaccaro FD, Valdovinos‐Ayala J, Percolla MI, Venturas MD, Pratt RB, Jacobsen AL (2019) Wood structure and function change with maturity: Age of the vascular cambium is associated with xylem changes in current‐year growth. Plant Cell Environ.42: 1816– 1831. doi: https://doi.org/10.1111/pce.13528
Sakai A, Larcher W (1987) Frost survival of plants. Ecol Stud. 62: 1– 321. doi: https://doi.org/10.1007/978-3-642-71745-1

Interaction of drought and frost in tree ecophysiology: rethinking the timing of risks Guillaume Charrier, Nicolas Martin-Stpaul, Claire Damesin, Nicolas Delpierre, Heikki Hänninen, José Torres-Ruiz, Hendrik Davi<p>In temperate, boreal and alpine areas, the edges of plant distribution are strongly affected by abiotic constraints. For example, heat waves and drought are major constraints at low latitude and elevation while cold and frost are key factors at...Tree biology and physiologyRosana López2020-04-28 21:07:27 View