
Fire and forest loss in the Dominican Republic during

the 21st Century

Abstract

Forest loss is an environmental issue that threatens valuable ecosystems in

the Dominican Republic (the DR). Although shifting agriculture by slash-and-

burn methods is thought to be the main driver of forest loss in the DR, empirical

evidence of this relationship is still lacking. Since remotely sensed data on fire

occurrence is a suitable proxy for estimating the spread of shifting agriculture,

here I explore the association between forest loss and fire during the first 18 years

of the 21st Century using zonal statistics and spatial autoregressive models on

different spatio-temporal layouts. First, I found that both forest loss and fire

were spatially autocorrelated and statistically associated with each other at a

country scale over the study period. The hotspots were concentrated mainly

in Cordillera Central, Sierra de Bahoruco, Los Haitises/Samaná Peninsula, and

the northwestern and easternmost regions. Second, from regional scale analysis,

I found
✿

,
✿✿✿✿✿✿✿✿✿✿✿

particularly
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿

western
✿✿✿✿

and
✿✿✿✿✿✿✿

central
✿✿✿✿

part
✿✿✿

of
✿✿✿

the
✿✿✿✿

DR.
✿✿✿✿✿✿✿✿✿

However,
✿

no

statistical association between forest loss and fire
✿✿✿

was
✿✿✿✿✿

found
✿

in the eastern half

of the country
✿✿✿✿✿✿

portion, a region that hosts a large international tourism hub.

Third
✿✿✿✿✿✿

Second, deforestation and fire showed a joint cyclical variation pattern

of approximately four years up to 2013, and from 2014 onwards deforestation

alone followed a worrying upward trend, while at the same time fire activity

declined significantly. Fourth
✿✿✿✿✿

Third, I found no significant differences between

the deforested area of small (<1 ha) and large (>1 ha) clearings of forest. I

propose these findings hold potential to inform land management policies that

help reduce forest loss, particularly in protected areas, mountain areas, and the

vicinity of tourism hubs.
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1. Introduction

Deforestation is a major concern for countries embracing the achievement of

Sustainable Development Goal 15 (Department of Economic and Social Affairs

of the United Nations Secretariat, 2009; UN System Task Team on the Post-

2015 UN Development Agenda, 2012). During the last decades, most countries5

have established reforestation programs to halt and reverse land degradation,

but little effort has been made in preventing forest loss in preserved areas and

secondary forests. In addition, a conceptual framework for developing indicators

for the SDG 15 is missing, making it hard to assess whether or not the goal is

being met (Hák et al., 2016).10

A global assessment of 21st-Century forest cover change, derived from Land-

sat satellite observations, was published in 2013 and has since been updated

yearly (Hansen et al., 2013). Several research teams used the outcomes of

Hansen et al.’s work to assess the changes and trends of forest cover in different

countries and to explore the causes of deforestation (e.g., commodity-driven de-15

forestation, shifting agriculture, and wildfires) (Curtis et al., 2018; Kalamandeen

et al., 2018).

Despite the ecological importance of the forest ecosystems in the Dominican

Republic (hereafter, the DR) (Hager & Zanoni, 1993; Cámara Artigas, 1997;

Olson et al., 2001; Cano & Veloz, 2012), comprehensive assessments of forest20

loss are rare. The available evidence suggests that there is a close relationship

between forest loss and shifting agriculture, the latter driven mainly by slash-

and-burn practices (Cámara Artigas, 1997; Zweifler et al., 1994; Lloyd & León,

2019; Wendell Werge, 1974; Ovalle de Morel & Rodríguez Liriano, 1984; OEA,

1967; Tolentino & Peña, 1998; Myers et al., 2004). Although the Ministry of25

Agriculture and the National Bureau of Statistics of the DR have conducted

agricultural censuses, their efforts have failed to provide consistent and spatially
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dense data on the intensity and extent of shifting agriculture activity over the

last decades (ONE, 1982, 2016). Therefore, even a simple correlation analysis

between forest loss and agricultural activity is unfeasible with the available30

data published by government institutions. A further limitation is the fact that

traditional regression analysis cannot to provide a systematic assessment of

statistical association between variables that exhibit spatial autocorrelation, so

spatial autoregressive models are needed (Anselin, 2013; Bivand et al., 2013b).

Considering these limitations, I explore here the statistical associations be-35

tween fire and forest loss in the DR in the first 18 years of the 21st Century,

using spatial autoregressive models applied to public data remotely and con-

sistently collected. Specifically, and referring to those 18 years, I answer the

following questions: 1) Was fire statistically associated with forest loss ? 2) If

✿✿✿✿

and,
✿✿

if so, was fire a suitable predictor of forest loss? 3
✿

2) Was there a greater40

degree of association of fire with small forest clearings than with larger ones?

4) What did the spatio-temporal patterns
✿✿

3)
✿✿✿✿

Did
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

clustering
✿✿✿

or
✿✿✿✿✿✿✿✿

temporal

✿✿✿✿✿

trend
✿

of forest loss and fire look like? 5) Did a trend existin either or both

variables
✿✿✿✿

exist? I hypothesize that both fire and forest loss were significantly

and increasingly associated over time, that fire was a suitable predictor of forest45

loss regardless of the size of the clearings, and that both fire and forest loss were

spatially autocorrelated over the study period.

This is the first study providing empirical evidence of the association be-

tween fire and forest loss in the DR. I assert that the results obtained increase

knowledge on spatio-temporal patterns of forest loss. In addition, the findings50

could assist decision-makers in assessing the achievement of the SDGs, and in

designing more effective policies for the long-term planning of nature conserva-

tion and fire management
✿✿

for
✿✿✿✿✿✿✿✿✿✿

preventing
✿✿✿✿✿✿✿

wildfire
✿✿✿✿

and
✿✿✿✿✿

forest
✿✿✿✿

loss.
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2. Materials and methods

2.1. Data download and preparation55

I used two types of datasets for this research (see Fig. 1): the collection of for-

est change layers from Hansen et al. (2013) and the fire point/hotspot locations

from NASA (2019a,b). From the forest change data, I used the loss year and the

tree cover thematic tiles, which I downloaded from the Global Forest Change

2000-2018 data service (Hansen/UMD/Google/USGS/NASA, 2019). The tree60

cover tiles classify the land area in tree canopy densities for the year 2000 as

a baseline—where trees mean “vegetation taller than 5 m in height”—and the

loss year tiles record the first year when the canopy reduced its density relative

to the baseline year. Although Tropek et al. (2014) commented that the study

underestimates forest loss, Hansen et al. (2014) argued that such criticism is65

based on a misconception of the definition of forest used in their study.

I stitched together the tiles from these datasets to form a seamless mosaic,

and then warped the results on to the UTM/WGS84 datum, from which I later

produced continuous maps of the DR mainland territory by masking out the

ocean/lake areas (Fig. A1). Since these products do not distinguish plantations70

(e.g., oil palm and avocado plantations) from forest, I acknowledged this limi-

tation when running exploratory analysis and building spatial models.

Moreover, the fire/hotspot data consisted of two products of the NASA’s

Fire Information for Resource Management System (FIRMS) processed by the

University of Maryland, provided as point layer files by the LANCE/ESDIS75

platform, covering two overlapping periods of time (NASA, 2019a,b). The most

comprehensive dataset, labeled as “MODIS Collection 6 standard quality Ther-

mal Anomalies / Fire locations” (MCD14ML), comprised fire data from 2000 to

2018. The second product, labeled as “VIIRS 375m standard Active Fire and

Thermal Anomalies product” (VNP14IMGTML), comprised locations of fires80

and thermal anomalies since 2012 up to the present time.

Since the MODIS dataset covered the longest time period, I used it as the

reference database for the multi-year analyses. Furthermore, considering that
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the VIIRS time series described just the last third of the analyzed period, I

used this set only for comparing
✿✿

for
✿✿✿✿✿✿✿✿✿

assessing
✿✿✿✿

the consistency and sensitivity85

of the MODIS data. To do this, I made
✿✿✿✿✿✿✿✿✿

generated
✿

a subset of the MODIS

and VIIRS datasets from the 2012-2018 period, summarizing the number of fire

points per month. With this subset, I performed a cross-correlation analysis

and fitted a linear model using the number of MODIS fire points per month as

the independent variable
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

VIIRS
✿✿✿✿

fire
✿✿✿✿✿✿

points
✿✿

as
✿✿✿✿

the
✿✿✿✿✿✿✿✿

response90

✿✿✿✿✿✿✿

variable
✿

(Venables & Ripley, 2002).
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Figure 1: Graphical abstract of the methodology. See text for details.
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The FIRMS source web service states that there are missing data at known

dates in the MODIS product, but, since this issue affects a minimal portion of

the time series—few days of 2001, 2002, 2007 and 2009, overall, less than 30

days—, I decided to acknowledge it and use the entire dataset without applying95

missing data algorithms.

Most of the fire data points from the FIRMS collections accounted for ac-

tual fires and thermal anomalies, but there were also noisy records (e.g., false

positives) that could affect the results. Thus, I removed the persistent ther-

mal anomalies records and other unrelated fire points
✿✿✿✿

with
✿✿✿✿

little
✿✿✿

or
✿✿✿

no
✿✿✿✿✿✿✿✿

potential100

✿✿

to
✿✿✿✿✿✿✿

produce
✿✿✿✿✿✿✿✿

wildfires, such as those originating from landfills with spontaneous

combustion and industrial furnaces. I refer to the resulting outcome as “the

noise-free versions of the fire points datasets” or simply “the noise-free versions”

(Fig. A2). For consistency reasons, I reprojected the point data files to conform

to the UTM/WGS84 datum. Last, I applied a mask comprising the DR land105

area to each dataset used in the study.

2.2. Spatio-temporal approaches

I used two different spatio-temporal approaches to answer the questions

posed in this study, which I refer to as “the long-term approach” and “the an-

nual approach”, respectively (see Fig. 1). In both approaches, I applied spatial110

statistics techniques to explore association patterns between forest loss and fire,

using statistical summaries generated from zonal grids and value layers.

2.2.1. Long-term approach

In this approach, I assessed the association between forest loss and fire in

the study period—2001-2018—using a zonal grid. I focused the analysis on115

the areas with 25% or higher tree cover in year 2000 as a baseline, which I

refer to as “forest cover in 2000”, or simply “forest cover” (Fig. C1). I used this

baseline for two reasons: 1) The 2000 tree cover serves as a baseline for global

forest change studies (Hansen et al., 2013); 2) 25% tree cover is an appropriate

7



threshold to cover different vegetation types, including tropical semi-deciduous120

and seasonally dry forests.

The zonal grid created for this approach consisted of 482 adjacent hexagons,

each with a nominal surface area of 100 km2 and having at least 45% of its area

on mainland territory (Fig. C1). With this setting, the total area of the zonal

grid was approximately 46,200 km2, which is indeed slightly smaller than the125

DR territory (approximately 48,400 km2).

To generate the fire data layers, I used the noise-free versions of the MODIS

and VIIRS datasets separately as inputs. From the former, I filtered the records

for the period 2001-2018, and, from the latter, those for the period 2012-2018. I

assessed the consistency and sensitivity of the MODIS dataset using an overlap-130

ping VIIRS dataset for the 2012-2018 period. Afterward
✿✿✿✿✿

After
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

consistency

✿✿✿✿✿

check, I used only the MODIS dataset for further analyses.

I selected the MODIS fire points falling into forest stands with a canopy

closure equal to or greater than 25%, which I generated from the year 2000

tree cover raster layer. Then, I computed the number of fire points from both135

datasets for each hexagon of the zonal grid. Last, I divided the number of points

by the cell area in square kilometers, and then again by the number of years

of each of the two periods of analysis, from which I obtained two data fields,

one for each period of analysis, containing the average density of fire points per

square kilometer per year (hereafter, fire density).140

Moreover, I generated one raster layer of forest loss, by reclassifying the loss

year raster. The values from 1 to 18 were reclassified into one pooled category

of forest loss representing the period 2001 to 2018. Thereafter, for each hexagon

of the zonal grid, I computed the surface area of forest loss per unit area by

dividing the forest loss surface area by the corresponding cell size, and then145

again by 18—the number of years of the period—to obtain the average forest

loss per unit area per year.

While the long-term approach provides a useful summary of the relation-

ships between fire density and forest loss for the period analyzed, most of the
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trends and other insightful patterns would remain unknown without an annual150

analytical approach.

2.2.2. Annual approach

For this approach, I analyzed temporal trends and statistical association

between forest loss and fire on an annual basis. In particular, I focused on

assessing the association between those variables considering the size of the155

forest clearings, using both absolute—spatially independent—annual values and

zonal statistics metrics
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatio-temporal
✿✿✿✿✿✿✿✿

analyses.

To obtain the absolute forest loss data
✿✿✿✿✿✿✿

perform
✿✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿

series
✿✿✿✿✿✿✿✿

analysis, I

generated 18 maps of annual forest loss, one per each year of the study period,

using the loss year raster as a source. From each map, I grouped the con-160

nected cells belonging to the same patch using the Queen’s case neighborhood,

and then calculated the surface area of the clumped patches. Afterward, using

Boolean operators, I generated 18 annual forest loss maps of “small forest clear-

ings”, made up of patches less than 1 ha in size, and 18 maps of “medium- and

large-sized forest clearings” (or simply “large clearings”), consisting of patches165

larger than 1 ha in size. Then, I computed the annual forest loss separately by

size of clearing, summing up the surface area values of the individual patches

of each loss map. Finally, I
✿

,
✿✿✿✿

and
✿

assessed the homogeneity of annual aver-

age values using
✿

a
✿

paired t-testand Wilcoxon test
✿

.
✿✿✿✿✿✿✿✿

Finally,
✿

I
✿✿✿✿✿

used
✿✿✿

the
✿✿✿✿✿✿✿

annual

✿✿✿✿

data
✿✿

to
✿✿✿✿✿✿✿✿✿

generate
✿

a
✿✿✿✿✿

time
✿✿✿✿✿✿

series
✿✿

of
✿✿✿✿✿✿

forest
✿✿✿✿

loss
✿✿✿✿

and
✿✿✿

fire
✿✿✿✿✿✿✿✿✿✿✿

occurrence,
✿✿✿✿✿

from
✿✿✿✿✿

which
✿✿

I170

✿✿✿✿✿✿✿✿

extracted
✿✿✿✿

the
✿✿✿✿✿

trend
✿✿✿✿

and
✿✿✿✿✿✿✿

cyclical
✿✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

“Christiano-Fitzgerald”

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

“Hodrick-Prescott”
✿✿✿✿✿✿

filters
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Balcilar, 2019).

In addition, I performed zonal statistic analyses, by summarizing
✿✿✿

To
✿✿✿✿✿✿✿

perform

✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatio-temporal
✿✿✿✿✿✿✿✿

analysis,
✿

I
✿✿✿✿✿✿✿✿✿✿✿

summarized
✿✿✿

the
✿

annual forest loss and fire density

over a regular hexagon grid of 253 hexagons, each of which had a maximum175

area of approximately 195 km2. I used a regular grid with larger cells than

those of the grid used in the long-term approach, to reduce the skewness of

the variables summarized or, in a best-case scenario, to improve adherence to

normality assumption.
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To perform the
✿✿✿✿✿✿✿✿✿

Afterward,
✿✿

I
✿✿✿✿✿✿✿✿✿✿

performed
✿✿

a
✿

zonal statistics analysis of for-180

est loss, I used
✿✿✿✿

using
✿

separate metrics for large and small clearings. For large

clearings, I used the relative area of annual forest loss (measured in km2 per

100 km2), since that metric is suitable for characterizing the deforestation activ-

ity on a given cell. For small clearings, density of patches (measured in number

of patches per 100 km2) was used, since the relative area may be irrelevant for185

summarizing small clearings on a given cell.

To
✿✿✿✿✿✿✿

Finally,
✿✿

to
✿

obtain the yearly subsets of fire points, I used the noise-free

version of the MODIS dataset for the 2001-2018 period. I generated annual maps

of fire points using the date field of the dataset. Then, from the annual maps

of large clearings, buffer zones were created around the patches at a maximum190

distance of 2.5 km. Afterward, I generated the corresponding annual subsets of

fire points, selecting only those falling within the patches and/or their buffer

zones (Fig.D1). Last, I summarized, over the hexagon grid, the yearly density

of MODIS fire points per 100 km2.

2.3. Exploratory spatial data analysis and spatial
✿✿✿✿✿

Spatial
✿

modeling195

For both the long-term and annual approaches, I conducted exploratory

spatial data analysis (ESDA) and fitted several models using the maximum

likelihood estimation method. First, I assessed the normality of the variables

using Shapiro-Wilk tests and QQ plots, and applied Tukey’s Ladder of Power

transformations to those variables departing from normality before performing200

spatial analysis, in order to fulfill the normality assumption or to reduce the

skewness of the variables (Mangiafico, 2019).

Afterward, for each of the grids used in this study, I created neighbour

objects between hexagons based on the criterion of contiguity. As expected,

each hexagon became the neighbour of six other contiguous hexagons, except205

for those located at the edge of the grid. Then, I defined spatial weights from

the neighbour objects using the “W-style”—row standardization—, in which the

weights of all the neighbour relationships for each areal unit summed 1.
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As a prerequisite for modeling, I tested whether fire density and forest loss

variables showed spatial autocorrelation, using Moran scatterplots and Moran’s210

I tests. I also generated local indicators of spatial association maps (hereafter

“LISA maps”), to represent high-high and low-low clusters of fire density and

forest loss across the DR (Bivand et al., 2013b,a; Bivand & Piras, 2015; Bivand

et al., 2017; Bivand & Wong, 2018; Anselin, 1995; Anselin & Rey, 2010; Anselin,

1996). A high-high cluster—hereafter HH cluster—is a group of cells in which215

high values are surrounded primarily by other high values. Conversely, a low-

low cluster—hereafter LL cluster—is a group of cells with low values surrounded

by other low values.

Since both fire density and forest loss variables showed significant patterns of

spatial autocorrelation, I analyzed the statistical association between them using220

spatial autoregressive models. Specifically, I fitted spatial lag and spatial error

models using fire density as a predictor variable and forest loss as a response

variable. In the long-term approach, I evaluated the prediction performance of

spatial lag and spatial error models. The most suitable model was chosen based

on the results of the Lagrange Multiplier diagnostic for spatial dependence in225

linear models, the results of the Breusch-Pagan test for heteroskedasticity of

residuals, and the Akaike information criterion (AIC) (Bivand et al., 2013b;

Sakamoto et al., 1986; Breusch & Pagan, 1979; Anselin, 2013; LeSage, 2015). In

the annual approach, I generated yearly spatial error models to assess the sta-

tistical association between fire and forest loss. In general, and unless otherwise230

indicated, for all statistical tests, I used a significance level α = 0.05, and for

error estimation I used a 95% confidence level.

The final stage was to produce all the results, including statistical sum-

maries, maps, and graphics in QGIS and R programming environment, using

parallel computing packages for generating the zonal statistics outcomes, as well235

as multiple packages for data visualization and spatial modeling (QGIS Devel-

opment Team, 2020; R Core Team, 2020; Pebesma, 2018, 2019; Kuhn et al.,

2019; Greenberg & Mattiuzzi, 2018; Weston, 2019; Hijmans, 2019; Venables &

Ripley, 2002; Tennekes, 2018; Wickham, 2017).
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3. Results240

3.1. MODIS data consistency and sensitivityassessment

The MODIS dataset showed high consistency with the VIIRS dataset for

the period 2012-2018. The cross-correlation between the two time series is
✿✿✿

was

quite high and positive for lag 0 ,
✿✿✿

(see
✿✿✿✿✿

Figs.
✿✿✿✿✿

B1).
✿✿✿✿

In
✿✿✿✿✿

terms
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

sensitivity,
✿✿✿

for

✿✿✿✿✿

every
✿✿✿

fire
✿✿✿✿✿

point
✿✿✿✿✿✿✿✿

detected
✿✿✿

by
✿✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

sensor
✿✿✿

on
✿✿

a
✿✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

basis,
✿✿✿✿

the
✿✿✿✿✿✿

VIIRS245

✿✿✿✿✿

sensor
✿✿✿✿✿✿✿✿

detected
✿✿✿

six
✿✿✿✿✿

times
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

hotspots.
✿✿✿✿✿✿✿✿✿

Likewise,
✿✿✿

the
✿✿✿✿✿✿

latter
✿✿✿✿✿✿✿

detected
✿✿✿

an
✿✿✿✿✿✿✿

average

✿✿

of
✿✿✿✿✿

eight
✿✿✿✿✿✿

points
✿✿✿✿

that
✿✿✿✿✿

were
✿✿✿✿

not
✿✿✿✿✿✿✿✿

detected
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

former.
✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿✿

although
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿

sensitivity
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

sensor
✿✿✿✿

was
✿✿✿✿✿

lower
✿✿✿✿✿

than
✿✿✿✿

that
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

VIIRS
✿✿✿✿✿✿✿✿✿✿✿✿✿

sensor—which

✿✿✿

was
✿✿✿✿✿✿✿✿

expected
✿✿✿✿✿✿

given
✿✿

its
✿✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿✿✿✿

resolution—,
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿✿

was
✿✿✿✿✿

good
✿✿✿✿✿✿✿

enough
✿✿✿

for

✿✿✿

the
✿✿✿✿✿✿✿✿

purposes
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿

study.
✿

250

3.2. Long-term
✿✿✿✿✿✿✿✿

analytical
✿

approach
✿✿

of
✿✿✿✿✿✿

forest
✿✿✿

loss
✿✿✿✿

and
✿✿✿✿

fire

3.2.1.
✿✿✿✿✿✿

Overall
✿✿✿✿✿✿✿✿✿

statistics

The surface areas
✿✿✿✿

area
✿

of forest loss relative to the forest cover in the

year 2000, were
✿✿✿

was
✿

approximately 3,100 km2 and 1,500 km2 during the periods

✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿

period
✿

2001-2018and 2012-2018, respectively, which represent ,
✿✿✿✿✿✿

which255

✿✿✿✿✿✿✿✿✿

represents c. 7% and 3% of the entire grid analyzed (Table 1). Moreover, during

the same periods
✿✿✿✿✿

period, the MODIS and VIIRS sensors
✿✿✿✿✿

sensor
✿

recorded almost

11,600 and 25,200 points
✿✿✿

700
✿

within forest cover areas, respectively.

3.2.2.
✿✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿

patterns

Most of the DR mainland territory experienced low levels of forest loss from260

2001 to 2018 (i.e., < 6 km2 per 100 km2). However, high levels of forest loss were

common in several mountain ranges and protected areas, such as Los Haitises

karst region, Samaná Peninsula, Sierra de Bahoruco, and the Cordillera Central

southern and northwestern borders (see Fig. 2
✿

2-A). It should be particularly em-

phasized that inaccessible areas in Los Haitises, Sierra de Bahoruco and south-265

ern Cordillera Central, reached worrisome records of forest loss greater than

25 km2 per 100 km2. Additionally, the Eastern Region—Punta Cana and its
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Table 1: Forest loss and number of fire points within forest cover, summarized using

a grid of 482 hexagons, for the period 2001-2018. The baseline year for the forest is

2000†.

Attribute
Period 2001-2018

(fire data from MODIS)

Total number of fire points 11,666

Average number of fire points per 100 km2 25.13

Average number of fire points per 100 km2

per year
1.4

Maximum number of fire points per 100 km2

per year
13.22

Total forest loss area in km2 (approximate

percentage relative to the entire grid)
3135.22 (6.8%)

Average forest loss area (km2) per 100 km2 6.72

Average forest loss area (km2) per 100 km2

per year
0.37

Maximum forest loss area (km2) per 100 km2

per year
1.82

† The values of this table were summarized using zonal statistics techniques relative to a

hexagonal grid. Thus, actual values of the entire DR may be slightly larger, since forest loss

patches and fire points outside the grid were ignored.

surroundings, where tourism development has grown steadily since the 1990s—

experienced high rates of forest loss during this period. Moreover, between 2012

and 2018, widespread forest loss occurred in Los Haitises and the eastern border270

of Cordillera Central (Fig. 2-B).

Furthermore, the density of fire points
✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

2001-2018
✿✿✿✿✿✿

period
✿

showed a

distribution pattern similar to that of forest loss. In both periods, 2001-2018

and 2012-2018, high
✿✿✿✿

High densities of fire points were fairly common in many

areas, such as the southern margin of Cordillera Central, Sierra de Bahoruco,275

Sierra de Neyba, and Los Haitises, with more than 30 and 65 fires
✿✿✿

fire
✿✿✿✿✿✿

points

per 100 km2 detected by MODIS and VIIRS, respectively (Figs.
✿✿

the
✿✿✿✿✿✿✿✿

MODIS

✿✿✿✿✿

sensor
✿✿✿✿✿

(Fig.
✿

2-C and 2-D
✿✿✿

2-B).

The analyses of the spatial autocorrelation of the transformed variables con-

sistently showed the presence of positive autocorrelation patterns (Table C1,280

Figs. 3
✿

3 and C2
✿✿

C2). The prevalence of HH clusters indicates that forest loss

13



Figure 2:
✿✿✿

(A)Forest loss (in km2 per 100 km2) for the periods (A)
✿✿✿✿✿✿

period 2001-2018and

✿

. (B) 2012-2018. Number of fire points per 100 km2 within forest cover for the periods

✿✿✿✿✿

period
✿

2001-2018 using MODIS dataset(C), and 2012-2018 using VIIRS dataset (D).

The baseline year for forest cover is 2000. Reference locations: 1 Los Haitises; 2

Samaná Peninsula; 3 Cordillera Central mountain range; 4 Sierra de Bahoruco; 5

Cordillera Septentrional; 6 Sierra de Neyba; 7 Eastern Region.

was notably widespread during the periods
✿✿✿✿✿✿

period
✿

2001-2018 and 2012-2018

in Los Haitises, Sierra de Bahoruco, Samaná Peninsula, and the Eastern Re-

gion (Figs. 3-A and 3-B). Furthermore, the analysis of the 2012-2018 period

exclusively shows that HH clusters were almost absent in the northwestern and285

southern margins of Cordillera Central, and in western Cordillera Septentrional

as well (Fig. 3-B
✿✿✿

3-A). Finally, LL clusters of forest loss represented areas of

intensive farming and/or where forest cover was absent in 2000.

Moreover, HH clusters of fire density were notably widespread in the south-

ern margin of Cordillera Central, Los Haitises, western Cordillera Septentrional,290

Sierra de Neyba, and Sierra de Bahoruco (Figs
✿✿✿

Fig. 3-C
✿✿✿

3-Band 3-D). There is a

noticeable high degree of agreement between forest loss and fire density LISA

maps in
✿✿✿✿

parts
✿✿✿

of
✿

Los Haitises, Sierra de Bahoruco, and other areas, suggest-

ing that an association exists between these variables. A notable exception is

the Eastern Region, where HH clusters of forest loss were not correspondingly295

matched by HH clusters of fire points.
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Figure 3: LISA maps (local indicators of spatial association maps) of
✿✿✿

(A) forest loss per

unit area averaged per year for the periods (A)
✿✿✿✿✿

period
✿

2001-2018,
✿

and (B) 2012-2018,

and fire points per km2 averaged per year within forest cover for the same periods

using
✿✿

the
✿

MODIS (C) and VIIRS (D) datasets
✿✿✿✿✿✿

dataset. The Tukey’s Ladder of Powers

transformed versions of the variables were used as inputs in all cases. Each hexagon

was classified either as HH cluster (red), LL cluster (blue), or no significant spatial

association (grey) regarding the corresponding variable.

3.2.3.
✿✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿✿✿

modelling

I fitted spatial lag and spatial error models to predict forest loss as a function

of fire density for both
✿✿✿

the 2001-2018 and 2012-2018 periods
✿✿✿✿✿

period. To generate

the modelsof the first period, I used forest loss per unit area per year from300

2001 to 2018 as the dependent variable, and MODIS fire points per square

kilometer per year of the same period as the independent variable. For the

second period, I used forest loss per unit area per year from 2012 to 2018 as

the dependent variable, and VIIRS fire points per square kilometer per year of

the same period as the independent variable. In all cases, the Tukey’s Ladder305

of Powers transformed versions of the variables were used as inputs.

✿✿✿

The
✿✿✿✿✿✿✿

results
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

diagnostic
✿✿✿

for
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿✿

dependence
✿✿✿✿✿✿✿✿✿

indicated
✿✿✿✿

that
✿✿

a
✿✿✿✿✿✿

spatial

✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿✿✿

specification
✿✿✿

was
✿✿✿✿✿✿✿✿

suitable
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

data
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

2001-2018
✿✿✿✿✿✿

period
✿✿✿✿✿✿✿✿✿✿

(TableC2).

✿✿✿

The
✿✿✿✿✿✿✿✿

relevant
✿✿✿✿✿✿✿✿✿

statistics
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

spatial
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿

models
✿✿✿✿✿

fitted
✿✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

summarized
✿✿✿

in

✿✿✿✿✿✿✿

Table 2.
✿✿✿✿✿

Both
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

coefficient
✿✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿✿

intercept
✿✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿

model
✿✿✿✿✿

were310

✿✿✿✿✿✿✿

positive
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

significant
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿

error
✿✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿✿✿

(p ≪ 0.01).
✿✿✿✿✿

AIC
✿✿✿✿✿

value
✿✿✿✿

was
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✿✿✿✿✿

lower
✿✿

in
✿✿✿✿✿✿

spatial
✿✿✿✿✿

error
✿✿✿✿✿✿

model
✿✿✿✿

than
✿✿✿✿

that
✿✿

of
✿✿✿

its
✿✿✿✿✿✿✿✿✿

equivalent
✿✿✿✿✿✿

linear
✿✿✿✿✿✿

model.
✿✿✿

In
✿✿✿✿✿✿✿✿

addition,

✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Breusch-Pagan
✿✿✿✿

and
✿✿✿✿✿✿✿✿

Moran’s
✿

I
✿✿✿✿

tests
✿✿✿✿✿✿✿

showed
✿✿✿

no
✿✿✿✿✿

trace
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

heteroskedasticity

✿✿✿

and
✿✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿✿✿✿✿✿✿✿✿

residuals,
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿

Table 2: Spatial error model fitting results of forest loss as a function of fire density

for the periods 2001-2018
✿✿✿✿✿

period
✿

(MODIS fire data)and 2012-2018 (VIIRS fire data)

Summary

statistic

FORESTLOSS0118∼

FIRESMODIS†

Intercept (Std. Error; Pr(> |z|))
0.099 (0.005; p ≪ 0.01)0.173 (0.008;

p ≪ 0.01)

Coefficient (Std. Error; Pr(> |z|))
0.250 (0.015; p ≪ 0.01)0.247 (0.014;

p ≪ 0.01)

λ (LR test value, p-value)
0.732 (243.26; p ≪ 0.01)0.740 (252.43;

p ≪ 0.01)

Moran’s I test for residuals (p-value) -0.002 (p = 0.5)-0.016 (p = 0.69)

Breusch-Pagan test statistic (p-value) 0.46 (p = 0.5)3.58 (p = 0.06)

AIC (AIC for standard linear model) -2183.9 (-1942.7)-1865.5 (-1615.1)

Nagelkerke pseudo-R2 0.600.62

†FORESTLOSS0118 stands for the transformed version of forest loss per unit-area averaged

per year of the period 2001-2018. FIRESMODIS stands for the transformed version of number

of fires per km2 averaged per year, detected by the MODIS sensor (2001-2018).

The results of the diagnostic for spatial dependence indicated that a spatial315

error specification was suitable for the data of the 2001-2018 and 2012-2018

periods (TableC2). The relevant statistics of the spatial error models fitted are

summarized in Table 2. Both the coefficient and the intercept estimates for each

model were positive and significant in the spatial error models (p ≪ 0.01). In

particular, the intercept estimate of the 2012-2018 model, which used VIIRS320

fire density as an explanatory variable of forest loss, was remarkably high. AIC

values were lower in spatial error models than those of their equivalent lineal

models. In addition, the Breusch-Pagan and Moran’s I tests showed no trace of

heteroskedasticity and spatial autocorrelation of residuals, respectively.

Lastly, considering only fire as a driver of forest loss, on average, each fire325

point detected by the MODIS sensor between 2001 and 2018 and by the VIIRS

sensor between 2012 and 2018 was associated with 1.5 ha and 3 ha of forest loss,
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respectively, implying a substantial effect size of fire density on forest loss in the

DR.

3.3. Annual approach330

3.3.1.
✿✿✿✿✿

Time
✿✿✿✿✿

series
✿✿✿✿✿✿✿✿

analysis

Using a paired t-test, I found no significant differences between proportional

deforestation area originated from small and large clearings—t=-2.08, df=17,

p=0.053. Furthermore, in several years of the study period (2001, 2003, 2011),

the total area of deforestation originated from small clearings was greater than335

that from large clearings (see Fig. 4).

Figure 4: Composition of annual forest loss area by size of clearing

The yearly average forest loss area recorded in large clearings was

0.2 km2/100 km2, and reached a maximum of nearly 0.4 km2/100 km2. Fur-

ther, the yearly average number of small clearings was 237 patches per 100 km2,
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and the maximum reached approximately 400 patches per 100 km2 (see Figs.340

5
✿

5.A-B and D2.A-B). Regarding fire density, the MODIS sensor detected nearly

two fire points per 100 km2 per year on average, and a maximum of 3.5 points

per 100 km2 per year . Finally, the VIIRS sensor detected, from 2012 to 2018, 9

fire points per 100 km2 per year on average, and 12 fire points at most (see Figs.

5.C-D
✿✿✿

5.C and D2.C-D). The higher hotspot detection rate of the VIIRS sensor345

compared to that of the MODIS sensor is due to its higher spatial resolution.

✿✿✿

C).

Figure 5: Yearly averages per 100 km2 of (A) Forest loss area (in km2) of large clearings

(>1 ha in size); (B) Number of small clearings (<1 ha in size); (C)and (D) Number

of fire points remotely sensed by
✿✿✿

the MODIS and VIIRS sensors
✿✿✿✿✿

sensor
✿

in or around

forest loss patches

Forest loss activity and fire occurrence showed a joint four-year cyclical

pattern of variation during most of the period investigated
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿

period
✿✿✿

of

✿✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿

4
✿✿✿✿✿✿

years
✿✿✿✿✿

from
✿✿✿✿✿

2001
✿✿✿✿✿✿✿✿

through
✿✿✿✿✿

2013,
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿

relative
✿✿✿✿✿

high
✿✿✿✿✿

peaks
✿✿✿

of350

✿✿✿✿✿✿✿

activity
✿✿

in
✿✿✿✿✿

2001,
✿✿✿✿✿✿

2005,
✿✿✿✿

2008
✿✿✿✿

and
✿✿✿✿✿

2012
✿✿✿✿

(see
✿✿✿✿

Fig.
✿✿✿✿✿

D2). However, the time-series
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of forest loss and fire activity diverge
✿✿✿✿✿✿✿✿

diverged
✿

considerably from each other,

starting in 2014. In particular, forest loss increased rather steeply from 2014 to

2017, whereas the number of fire points decreased significantly during the same

period (Fig. 5
✿

5). Hence, this is the first time in the past two decades in which355

fire and forest loss followed diverging trends nationwide.

3.3.2.
✿✿✿✿✿✿✿✿✿✿✿✿✿

Spatio-temporal
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿

and
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

modelling

Regarding spatio-temporal features, both forest loss and fire density showed

patterns of cyclical variation of their spatial autocorrelation, and featured mul-

tiple spatial layouts of HH clusters and LL clusters in shifting locations through-360

out the DR over the period under investigation. Moran’s I tests, which were

applied to the transformed versions of the variables, yielded significant results

for every year of the study period. In addition, the Moran’s I test statistic

showed a cyclical and varied pattern for all the variables analyzed over the

study period (Fig. 6
✿

6).365

Figure 6: Moran’s I
✿✿✿✿

(used
✿✿

to
✿✿✿✿✿✿

assess
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation) evolution
✿✿✿✿

from
✿✿✿✿✿

2001
✿✿

to

✿✿✿✿

2018 for the transformed versions of yearly averages per 100 km2 of:
✿

(A)Forest loss

area of large clearings (>1 ha in size); (B) Number of small clearings (<1 ha in size);

(C)and (D) Number of fire points located inside or around forest loss patches , remotely

recorded by
✿✿✿

the MODIS and VIIRS sensors, respectively
✿✿✿✿✿

sensor

Concerning patterns of forest loss, the HH clusters were concentrated mainly

in five locations during the study period: Los Haitises-Samaná Peninsula,
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Cordillera Central, Sierra de Bahoruco, and Northwestern and Eastern Regions,

the last being the largest tourism hub of the DR—including the resort town of

Punta Cana and other tourist destinations (Figs. 7, 8, D3 and D4). The Eastern370

Region, in particular, showed very distinctive spatio-temporal patterns of forest

loss over the study period; therefore, I analyzed that region separately.

During the three-year period 2001-2003, HH clusters of both small and large

forest clearings were concentrated in Los Haitises-Samaná Peninsula and at the

southern and northern ends of western DR. From 2004 to 2012, large forest clear-375

ings were significantly concentrated in the northwest of the DR—which peaked

in 2004, and in the periods 2006-2008 and 2010-2011, in southern Cordillera Cen-

tral and Sierra de Bahoruco. In addition, HH clusters of small clearings were

widespread in Los Haitises in 2003, 2005, 2007-2008, and 2010. Subsequently,

during the period 2013-2018, HH clusters of both large and small clearings were380

concentrated in Los Haitises and in Samaná Peninsula, as well as in western

and southeastern portions of Cordillera Central and Sierra de Bahoruco. Of

note was widespread deforestation in Los Haitises and its southern end, which

comprises an active oil palm plantation. These hotspots are shown on the LISA

maps by large HH clusters of small clearings during the period 2013-2014, as385

well as by HH clusters of both large and small clearings in the period 2017-2018.

Figure 7: Yearly LISA maps (local indicators of spatial association maps) of trans-

formed forest loss density data of large clearings. Red represents HH clusters, blue

depicts LL clusters, and grey shows no significant spatial association.
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Figure 8: Yearly LISA maps (local indicators of spatial association maps) of trans-

formed forest loss density data of small clearings. Same legend as in Fig 7.

In addition, concerning the Eastern Region, HH clusters of large clearings

began to develop in 2002 and stopped in subsequent years, then emerged inter-

mittently from 2005 onwards, showing peaks of activity in 2009 and 2011 and a

steady increase between 2013 and 2018. Notably, HH clusters of small clearings390

were detected in this region in 2003, in 2005-2009, and in years 2011 and 2013,

but no new clusters of this type were observed in subsequent years.

Regarding fire density, during the entire period investigated, HH clusters

were concentrated especially in the western half of the DR, particularly in the

Northwestern Region, Sierra de Bahoruco, and Cordillera Central (Figs. 9 , 9,395

D5 and D5
✿✿✿

and
✿✿✿

D5). Also, during both the first years and in the middle of the

period, HH clusters were present in Los Haitises and Samaná Peninsula.

Yearly LISA maps (local indicators of spatial association maps) of transformed

VIIRS fire density data. Same legend as in Fig 7.

As shown in the LISA maps of MODIS fire density, the spatial patterns of fire400

density slightly resembled those of forest loss over the period under study (Fig.

9). However, the degree of agreement between forest loss and fire density was

greater in the Western and Central Regions—Sierra de Bahoruco, Northwestern

Region, Cordillera Central—than in the eastern half of the country—Los Hai-

tises and the Eastern Region. Particularly, although the eastern half showed405

extensive forest loss activity, few HH clusters of fire density were recorded in
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Figure 9: Yearly LISA maps (local indicators of spatial association maps) of trans-

formed MODIS fire density data. Same legend as in Fig 7.

this region during the period under investigation. In fact, during the six-year

period 2013-2018, HH clusters of fire completely disappeared from the Eastern

Region (Figs. 9 and D5
✿✿✿✿

Fig.
✿✿

9). Hence, fire activity showed a diverging trend in

relation to that of deforestation in Los Haitises and the Eastern Region.410

In addition, three remarkable features regarding the distribution of HH clus-

ters of fire density merit mention in this section. (Figs. 9 , 9, D5 and D5
✿✿✿

and

✿✿✿

D5). The first is a large concentration of HH clusters in 2005 over southern

Cordillera Central, related to an uncontrolled wildfire that devastated almost

80 km2 of pine forest. As a result, more than 100 fire points per 100 km2 were415

reached, which is a historical record. Second, for three years in a row—2013,

2014, 2015—both MODIS and VIIRS sensors
✿✿✿✿✿✿✿✿✿

2015—the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

sensor
✿

detected

a high concentration of hotspots over Sierra de Bahoruco, attributable to multi-

ple wildfires that swept large areas of different types of mountain forests during

those years. Third, in 2014 and 2015, both sensors
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

sensor detected a420

relatively high number of fire points in Valle Nuevo, southern Cordillera Central,

which are depicted in Fig. D5
✿✿

D5
✿

as HH clusters, and which are also consistent

with the fire history of the area.

Finally, the spatial error models yielded consistent results for forest loss as a

function of fire density (Table 3). The main finding was that, when modeling the425

variables over the entire grid—i.e., nationwide analysis—fire density significantly
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associated with forest loss, which is consistent with the results of the long-

term approach. Particularly, both fire density coefficient and intercept were

significant in every annual model, regardless of the size of deforestation clearings,

whether large or small. Moreover, regional subsets showed that fire density was430

a suitable predictor of forest loss most of the time in Western and Central

regions, whereas in Los Haitises-Samaná Peninsula and the easternmost region,

fire density failed as a predictor of forest loss for many years.

Table 3: Number of years in which the coefficients of the annual spatial error models

were not significant, considering the entire grid and different regional subsets.

Variables of the models

(transformed versions)
Regional subset (see Fig. 10)

Number of years† (listing in

parenthesis)

Forest-loss per unit-area in

large clearings vs. MODIS

fire density

Entire grid -

Western -

Central 1 year (16)

Los Haitises-Samaná 11 years (1, 2, 7, 9-14, 16, 17)

Eastern 9 years (1-4, 7, 10, 15-17)

Forest-loss per unit-area in

small clearings vs. MODIS

fire density

Entire grid -

Western -

Central 3 years (4, 12, 16)

Los Haitises-Samaná 7 years (1, 2, 4, 7, 12, 14, 17)

Eastern 15 years (1-12, 15-17)

†Number of years with non-significant coefficient at α = 0.01
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Figure 10: Regions for annual model analyses. (A) Western, (B) Central, (C) Los

Haitises-Samaná, and (D) Eastern.

4. Discussion

I hypothesized that fire and forest loss were significantly associated during435

the first 18 years of the 21st Century in the DR, and that fire was a suitable pre-

dictor of forest loss, regardless of the size of the forest clearings. The evidence

found in the present study supports this hypothesis consistent with other studies

that found a significant association between forest loss and slash-and-burn agri-

culture (Zweifler et al., 1994; Lloyd & León, 2019; Wendell Werge, 1974; Myers440

et al., 2004). Moreover, the association between fire and forest loss is particu-

larly consistent in the western half of the DR, which is likely due to the more

pronounced dry season in that region and to the presence of large mountain

systems, i.e., Cordillera Central, where shifting agriculture is widespread.

However, the evidence also suggests that, in the eastern half of the country,445

which includes Los Haitises and the easternmost region, fire was not a suitable

predictor of forest loss. Two conjectures may explain this finding: 1) Frequent

cloudy skies over the region, which may prevent optical sensors—i.e., MODIS

and VIIRS—from
✿✿✿

the
✿✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿

sensor
✿✿✿✿✿

from
✿

recording fire hotspots; 2) Factors

other than fire that may drive forest loss, such as commodity-driven agriculture,450
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shifting agriculture by means of downing vegetation without burning—or by in-

deed performing burns but with little impact on forest cover—and expansion

of tourism infrastructure facilities. The first conjecture is unlikely to explain

the observed pattern, since fire activity in cloudy conditions, considered on an

annual average basis, would have little effect as a driver of pervasive deforesta-455

tion. The second conjecture provides a more likely explanation for deforestation

peaks not associated with fires, since it fits quite well with the tree cover dec-

imation mechanisms that are typically used in this part of the DR, i.e., forest

clearing to expand shifting agriculture driven primarily by subsistence needs.

Since there are many contextual differences between Los Haitises and the east-460

ernmost tourism hub, I discuss the implications of holding this hypothesis true

for each area separately.

In Los Haitises National Park, shifting agriculture was likely the most suit-

able driver of deforestation, since it is a well-documented concern in this pro-

tected area (Gesto de Jesús, 2016; Dirección Nacional de Parques, 1991). Shift-465

ing agriculture is commonly driven by slash-and-burn systems, but in this case

the “burn” component was likely to have little effect as a driver of deforesta-

tion in that area. All in all, the evidence suggests that shifting agriculture

was widespread within the protected area, particularly in the period 2014-2017.

However, the political and socioeconomic circumstances that led to a deforesta-470

tion peak in Los Haitises and surroundings remain unknown. Future research

may provide insights into the specific causes that explain this peak in shifting

agriculture, and may also provide guidelines on how to prevent the recurrence

of deforestation peaks in the future, given that Los Haitises is an important

protected area of the country.475

It is worth mentioning that, in this part of the DR, another probable source

of deforestation without burning is the frequent renewal by cutting of palm

trees in a large plantation situated just south of Los Haitises—a typical case of

commodity-driven deforestation. Although this plantation is outside the bound-

aries of the national park, its impact on the biodiversity and ecology of the area480

is unknown.
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Finally, in the easternmost region, much of the forest loss activity was prob-

ably driven by the expansion of tourism facilities, and by increased agricultural

and livestock activities, ultimately caused by a higher demand from tourism.

This is a concerning trend for the future of the DR forests, because although485

the protected areas of the region are relatively well preserved, there is a lack of

policies aimed at the conservation and proper management of the forests in the

vicinity of tourism facilities.

Regarding spatial patterns, I also hypothesized that both forest loss and fire

experienced a growing spatial autocorrelation over the study period. Although490

a high degree of spatial autocorrelation was a common characteristic in both

forest loss and fire density variables over the study period, no evidence was

found to support a hypothesis of a growing autocorrelation trend. Instead, a

cyclical variation of autocorrelation was the most common feature observed,

which I interpret as a consequence of both deforestation recovery and drought-495

no drought cycles. However, further research is needed to determine the precise

causes of those singular cycles.

✿

I
✿✿✿✿

also
✿✿✿✿✿✿✿

suggest
✿✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

results
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿

study
✿✿✿✿

may
✿✿✿✿✿✿

assist
✿✿✿✿✿✿✿✿

decision
✿✿✿✿✿✿✿

makers
✿✿

in

✿✿✿✿✿✿✿✿

designing
✿✿✿✿✿✿✿✿

effective
✿✿✿✿✿✿✿

policies
✿✿

to
✿✿✿✿✿✿✿

prevent
✿✿✿✿✿✿✿✿

wildfires
✿✿✿✿

and
✿✿✿✿✿

forest
✿✿✿✿

loss.
✿✿✿✿✿✿

More
✿✿✿✿✿✿✿✿✿✿

specifically,

✿

I
✿✿✿✿✿✿✿✿✿✿✿

recommend
✿✿✿✿✿✿✿✿

focusing
✿✿✿

on
✿✿✿✿✿

forest
✿✿✿✿

loss
✿✿✿✿✿

and
✿✿✿

fire
✿✿✿✿✿✿✿✿✿✿

prevention
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

core
✿✿✿✿✿

zones
✿✿✿

of500

✿✿✿✿✿✿✿✿

protected
✿✿✿✿✿✿

areas,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementing
✿✿

a
✿✿✿✿✿✿✿

natural
✿✿✿✿✿✿✿✿✿✿✿

regeneration
✿✿✿✿✿✿✿✿✿

program
✿✿✿

by
✿✿✿✿✿✿

letting

✿✿✿✿✿✿

nature
✿✿✿✿✿✿

evolve
✿✿✿

on
✿✿✿

its
✿✿✿✿

own
✿✿✿✿✿✿

where
✿✿✿✿✿

forest
✿✿✿✿✿✿

cover
✿✿

is
✿✿✿✿✿✿✿

lacking,
✿✿✿✿✿✿✿✿✿

especially
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

buffer

✿✿✿✿✿

zones
✿✿

of
✿✿✿✿✿✿✿✿✿

mountain
✿✿✿✿✿✿✿✿✿

protected
✿✿✿✿✿

areas
✿✿

of
✿✿✿✿✿✿✿

western
✿✿✿✿

DR.
✿✿✿

Of
✿✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿✿

concern
✿✿✿✿

are
✿✿✿

the

✿✿✿✿

core
✿✿✿✿

and
✿✿✿✿✿

buffer
✿✿✿✿✿✿

zones
✿✿

of
✿✿✿✿✿

José
✿✿✿

del
✿✿✿✿✿✿✿✿

Carmen
✿✿✿✿✿✿✿✿

Ramírez,
✿✿✿✿

Los
✿✿✿✿✿✿✿✿✿

Haitises,
✿✿✿✿✿

Valle
✿✿✿✿✿✿

Nuevo

✿✿✿

and
✿✿✿✿✿✿

Sierra
✿✿✿

de
✿✿✿✿✿✿✿✿✿✿

Bahoruco
✿✿✿✿✿✿✿✿

National
✿✿✿✿✿✿

Parks,
✿✿✿

as
✿✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿

other
✿✿✿✿✿✿✿✿✿

protected
✿✿✿✿✿

areas
✿✿✿

in505

✿✿✿

the
✿✿✿✿✿✿✿✿

northern
✿✿✿✿✿✿✿

margin
✿✿

of
✿✿✿✿✿✿✿✿✿✿

Cordillera
✿✿✿✿✿✿✿

Central.
✿✿✿✿✿✿

These
✿✿✿✿✿✿

areas,
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿

the
✿✿✿✿✿✿✿

hotspot

✿✿✿✿✿✿✿✿

locations
✿✿✿✿✿✿✿✿✿✿

highlighted
✿✿✿

as
✿✿✿

HH
✿✿✿✿✿✿✿✿

clusters
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

LISA
✿✿✿✿✿✿

maps,
✿✿✿✿✿✿

require
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

attention

✿✿✿

and
✿✿✿✿✿✿✿✿✿

resources
✿✿✿

to
✿✿✿✿✿✿✿

prevent
✿✿✿✿✿✿✿✿

wildfires
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

deforestation.
✿✿✿✿

In
✿✿✿✿✿✿✿✿

addition,
✿✿✿✿✿✿

there
✿✿

is
✿✿

a

✿✿✿

lack
✿✿✿

of
✿✿✿✿✿✿✿

special
✿✿✿✿✿✿✿

policies
✿✿✿

to
✿✿✿✿✿✿✿✿

prevent
✿✿✿✿✿✿✿✿✿✿✿✿

deforestation
✿✿✿

in
✿✿✿✿✿

areas
✿✿✿✿✿✿✿✿✿✿✿✿

surrounding
✿✿✿✿✿✿

major

✿✿✿✿

cities
✿✿✿✿✿

and
✿✿✿✿✿✿✿

tourism
✿✿✿✿✿✿

hubs.
✿✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

recommendations
✿✿✿

in
✿✿✿✿✿✿

these
✿✿✿✿✿

areas
✿✿✿✿

are
✿✿

to
✿✿✿✿✿✿

avoid510

✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿✿✿✿✿

deforestation
✿✿✿✿✿✿✿✿✿

activities
✿✿✿✿

and
✿✿

to
✿✿✿✿✿✿

allow
✿✿✿✿✿✿✿✿✿✿✿

regeneration
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿✿✿

affected
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✿✿✿✿✿✿✿✿✿✿

ecosystems,
✿✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿✿✿

wetlands
✿✿✿✿

and
✿✿✿✿✿

areas
✿✿

of
✿✿✿✿✿

high
✿✿✿✿✿✿✿✿✿

endemism
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿

previously
✿✿✿✿

had

✿✿✿✿✿✿

forests.
✿

The main limitations of this study were those imposed by the intrinsic char-

acteristics of the data available, which are ultimately related to the data ac-515

quisition mechanisms of the optical sensors MODIS and VIIRS
✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿

optical

✿✿✿✿✿

sensor. Although detecting fires under cloud cover is virtually impossible with

these sensors
✿✿✿✿

this
✿✿✿✿✿✿

sensor, I surmise that the impact of false negatives on yearly

analyses is quite limited. Another constraint met in this study was the use of

fixed-size cells for the computations of zonal statistics, which may have pre-520

vented the determination of multiscalar patterns. Therefore, future research

using regular and non-regular grids as zone layers, or taking advantage of com-

puter vision
✿✿✿

and
✿✿✿✿✿✿✿✿

machine
✿✿✿✿✿✿✿✿

learning
✿

techniques, may provide insights about the

significant multiscalar association patterns that may exist between forest loss

and fire.525

In conclusion, it should be noted that since fire is a fairly common feature

associated with shifting agriculture,
✿

so
✿

assessing the former is an indirect means

of
✿✿

for
✿

understanding the latter, which ultimately may help prevent future impact

on forest ecosystems. Therefore, proper fire assessment using remotely collected

data and advanced spatial statistical techniques may inform land management530

policies and conservation strategies to help reduce forest loss, particularly in

protected areas, mountain areas, and the vicinity of tourism hubs. The ana-

lytical approaches used and the results obtained in this study hold potential to

assist in this task.
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✿✿✿

The
✿✿✿✿✿

data
✿✿✿✿✿

that
✿✿✿✿✿✿✿✿

support
✿✿✿

the
✿✿✿✿✿✿✿✿

findings
✿✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿

study
✿✿✿

are
✿✿✿✿✿✿✿

openly
✿✿✿✿✿✿✿✿

available
✿✿✿

in

✿✿✿✿✿✿

Zenodo
✿✿✿

at
✿

https://zenodo.org/record/5681481
✿

.
✿✿✿✿✿

The
✿✿✿✿✿✿

scripts
✿✿✿✿✿

used
✿✿✿

for
✿✿✿✿✿

data

✿✿✿✿✿✿✿✿

curation,
✿✿✿✿✿✿✿

analysis
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

visualisation
✿✿✿

are
✿✿✿✿✿✿✿✿

available
✿✿

in
✿✿✿✿✿✿✿✿

GitHub
✿✿

at https://github.

com/geofis/forest-loss-fire-reproducible
✿

.
✿
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Appendices

Appendix A. Supplementary data for the methodology section

Figure A1: Loss year layer from 2001 to 2018 for the Dominican Republic, according

to Hansen et al. (2013). Labelled points denote the location of some cities chosen as

reference.
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Figure A2: MODIS fire points/hotspots from 2001 to 2018 for the DR mainland. This

is a noise-free version of the original dataset, which excludes unrelated fire points (e.g.,

burning landfills and industrial furnaces). See text for details.
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Appendix B. Supplementary data for the results section: MODIS data consis-

tency and sensitivity assessment

Figure B1: Cross-correlation of number of fire points per month sensed by MODIS

and VIIRS sensors for the period 2012-2018

Figure B2: Number of fire points per month sensed by MODIS and VIIRS sensors for

the period 2012-2018
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Figure B3: Scatter plot of the number of fire points per month sensed by MODIS and

VIIRS sensors for the period 2012-2018
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Appendix C. Supplementary data for the results section: long-term approach

Figure C1: DR forest cover in the year 2000. Areas with a canopy closure equal

to or greater than 25% in tree cover map of Hansen et al. (2013) were classified as

forest. The hexagonal grid overlaid was used for zonal statistics computations of the

long-term approach. See text for details.
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Table C1: Transformation parameters and normality test results for forest loss and

fire variables

Variable
Tukey’s Ladder of

Powers, λ

Shapiro-Wilk test,

W (p-value)

Moran’s I test,

I (p-value)

Average forest loss

per unit area per

year (2001-2018)

λ = 0.33 W = 0.99 (p = 0.81) I = 0.48 (p ≪ 0.01)

Average fire density

per km2 per year

(MODIS dataset)

(2001-2018)

λ = 0.33
W = 0.98
(p < 0.01) I = 0.55 (p ≪ 0.01)

Average forest loss

per unit area per

year (2012-2018)

λ = 0.23

W = 0.99 (p = 0.75)

I = 0.48 (p ≪ 0.01)

Average fire density

per km2 per year

(VIIRS dataset)

(2012-2018) λ = 0.3
W = 0.99
(p < 0.01)

I = 0.55 (p ≪ 0.01)
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Figure C2: Moran scatterplots of the transformed versions of the analyzed variables.

✿✿✿

(A)Average forest loss per unit area per year of the periods (A)
✿✿✿✿✿

period
✿

2001-2018and
✿

.

(B) 2012-2018. Average
✿✿✿✿✿✿

average
✿

number of fire points per km2 per year in the periods

✿✿✿✿✿

period
✿

2001-2018 (C), using MODIS dataset, and 2012-2018 (D), using VIIRS dataset.

Table C2: Lagrange Multiplier tests for spatial dependence in linear regression models

of forest loss as a function of fire density for the periods
✿✿✿✿✿✿

period 2001-2018 (MODIS

fire data)and 2012-2018 (VIIRS fire data)

FORESTLOSS0118∼FIRESMODIS†

Lagrange Multiplier test Statistic p valueStatistic p value

For error dependence

(LMerr)
330.00 ≪0.01340.74 ≪0.01

For a missing spatially

lagged dependent variable

(LMlag)

227.22 ≪0.01226.41 ≪0.01

Robust variant of LMerr 106.49 ≪0.01118.89 ≪0.01

Robust variant of LMlag 3.72 0.054.56 0.03

†FORESTLOSS0118 stands for the transformed version of forest loss per unit-area averaged

per year of the period 2001-2018. FIRESMODIS stands for the transformed version of number

of fires per km2 averaged per year, detected by the MODIS sensor (2001-2018)

41



Appendix D. Supplementary data for the results section: annual approach

Figure D1: Example of the 2013 forest loss areas and their vicinity (red shaded areas)

used in the annual trend approach. These areas were generated by adding a buffer

zone of 2.5 km around each patch larger than 1 ha in area from the loss year dataset

(Hansen et al., 2013). The hexagonal grid, depicted as an overlay, was used for zonal

statistics computations. See text for details.

42



Figure D2: Time series decomposition of yearly averages per 100 km2 of (A)Forest loss

area (in km2) of large clearings (>1 ha in size); (B) Number of small clearings (<1 ha

in size); (C)and (D) Number of fire points remotely sensed by
✿✿✿

the
✿

MODIS and VIIRS

sensors
✿✿✿✿✿

sensor
✿

in or around forest loss patches

Figure D3: Yearly forest loss area (in km2 per 100 km2) from patches greater than

1 ha in size for the period 2001-2018
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Figure D4: Yearly number of forest loss patches smaller than 1 ha (in km2 per 100 km2)

for the period 2001-2018

Figure D5: Yearly number of MODIS fire points per 100 km2 within patches of forest

loss and surroundings for the period 2001-2018

Yearly number of VIIRS fire points per 100 km2 within patches of forest loss

and surroundings for the period 2012-2018
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